Reactions of (difluoroamino)trinitromethane with nucleophilic reagents

G. Kh. Khisamutdinova* and S. A. Shevelevb

a State Research Institute "Kristall",
6 ul. Zelenaya, 606007 Dzerzhinsk, Nizhnii Novgorod Region, Russian Federation.

Fax: +7 (831 2) 54 6501
bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences,

47 Leninsky prosp., 119992 Moscow, Russian Federation.

Fax: +7 (095) 135 5328

Reactions of $F_2NC(NO_2)_3$ with metal fluorides (KF and CsF) in DMF yield a substitution product of the fluorine atom for one nitro group, $F_2NC(NO_2)_2F$. The reaction of $F_2NC(NO_2)_3$ with LiBr in ethanol or DMF affords $Br(NO_2)C=NF$ rather than the expected bromo derivative $F_2NC(NO_2)_2Br$.

Key words: (difluoroamino)trinitromethane, (difluoroamino)fluorodinitromethane, bromonitro(*N*-fluoroimino)methane, substitution reaction.

In continuation of the investigations on the reactions of polynitromethanes with nucleophiles, $^{1-7}$ we studied the reactions of (difluoroamino)trinitromethane (1) with fluoride and bromide ions.

The known reactions of $C(NO_2)_4$ and $XC(NO_2)_3$ (X = F, Cl, and Br) with halide and azide ions afford products in which one nitro group is replaced by the halogen atom¹⁻⁶ and by the azido group.^{1,6,7} In reactions of (difluoroamino)polynitroalkanes, including compound 1, with the azide ion it is the difluoroamino group rather than the nitro group that is replaced.⁶

Results and Discussion

We found that the direction of the reaction of compound 1 with nucleophilic reagents depends on their nature. Thus the reaction of 1 with metal fluorides (KF or CsF) in anhydrous DMF yields (difluoroamino)fluorodinitromethane (2), *i.e.*, a substitution product of the fluorine atom for the nitro group (Scheme 1), as is the case of other polynitromethanes. ¹⁻³ So far this reaction remains the only one method for the preparation of compound 2.

Scheme 1

$$F_2NC(NO_2)_3 + F^- \longrightarrow F_2NC(NO_2)_2F + NO_2^-$$
1

The yield of compound **2** depends on the nature of metal fluoride. Under the same conditions, its yield varies from ~9% with KF to 40% with CsF, compound **1** being completely converted.

A relatively low yield of 2 is probably due to the reaction of the nitrite ion with the starting compound 1, which is typical of polynitroalkanes (Scheme 2).^{5,8,9}

Scheme 2

$$1 + NO_2^- \longrightarrow F_2NC(NO_2)_2^- + N_2O_4$$

Like other polynitromethane anions,⁵ anion 3 decomposes in DMF to nitrogen oxides and other gases, which was observed experimentally.

The reaction of 1 with LiBr in ethanol or anhydrous DMF in the presence of CH_2Cl_2 at 30—35 °C unexpectedly did not yield the bromo derivative (4), giving bromonitro(N-fluoroimino)methane (5) (Scheme 3).*

Scheme 3

$$\begin{array}{c}
F_2NC(NO_2)_2Br + NO_2^{-1} \\
4 \\
O_2N \\
Br \\
C=NF
\end{array}$$

A pathway of the formation of compound 5 involves nucleophilic substitution of the bromine atom for the nitro group in compound 1 under the action of the bromide ion to give product 4, which undergoes bromide-induced redox decomposition, like bromotrinitromethane,⁵ to form unstable anion 3. Elimination of the fluoride ion from 3 gives *N*-fluoroiminodinitromethane (6) and is followed by replacement of one nitro group by the bromine atom. Similar substitution reactions at a trigonal carbon atom bound to strong electron-acceptor

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 706-707, April, 2001.

^{*} In the absence of CH₂Cl₂, the reaction proceeds very vigorously and is accompanied by a sharp increase in temperature. The resulting products are difficult to separate. According to the GLC data, compound 5 is also present in the mixture.

groups are well known (cf. reactions of phosgene, thiophosgene, and benzoyl- and m-nitrobenzohydroximoyl halides¹⁰ with nucleophiles).

Alternatively, the reaction pathway can include twostep nucleophilic substitution of the bromine atom for the nitro group in compound 1 under the action of the bromide ion, which gives intermediate 4 and then dibromo(difluoroamino)nitromethane (7), which is similar to the formation of dibromodinitromethane from tetranitromethane;⁵ a single-electron transfer from the bromide ion to compound 7 and generation of a radical anion of dibromo(difluoroamino)nitromethane (8); its decomposition into the bromo(difluoroamino)nitromethane anion (9) and a bromine radical, as in the formation and decomposition of the radical anion of chlorofluorodinitromethane into anion 3 and a chlorine radical;¹¹ and the decomposition of anion 9 into product 5 and the fluoride ion (Scheme 4).

Scheme 4

1
$$\xrightarrow{+Br^{-}}$$
 4 $\xrightarrow{+Br^{-}}$ 3 $\xrightarrow{-F^{-}}$ $FN = C(NO_{2})_{2}$ $\xrightarrow{+Br^{-}}$ 5
 $+Br^{-} - NO_{2}^{-}$ 6 $\xrightarrow{-F^{-}}$ $F_{2}NC(NO_{2})Br_{2}^{+}$ $\xrightarrow{-Br^{+}}$ $F_{2}NC(NO_{2})Br_{2}^{-}$ $\xrightarrow{-Br^{+}}$ $F_{2}NC(NO_{2})Br_{2}^{-}$ 9

Experimental

KF, CsF, LiBr, and DMF of "chemically pure" grade were used. KF, CsF, and LiBr were ground and calcined in a glass reaction vessel equipped with a magnetic stirrer, thermometer, and a dropping funnel *in vacuo* (10 Torr) at 300 °C for 2 h prior to each experiment; after cooling to ~20 °C, anhydrous DMF was added from the dropping funnel (DMF was dried over molecular sieves for 10 days).

IR spectra were recorded on a UR-10 instrument in a thin film between germanium plates. ^{19}F NMR spectra were recorded on a Varian DP-60 instrument (56.4 MHz) with CF $_3$ COOH as the external standard.

GLC analysis was carried out on an LKhM-8 chromatograph with a katharometer (column length 3.3 m, QF fluorosilicon (10%) on Chromosorb P (150—200 mesh) as the stationary phase, helium as the carrier gas, temperature 53 °C).

(Difluoroamino)fluorodinitromethane (2). A solution of compound 1 (20.2 g, 0.1 mol) in 10 mL of anhydrous DMF was added dropwise with stirring to a freshly prepared (see above) and cooled (10 °C) suspension of CsF (20 g, 0.11 mol) in 30 mL of anhydrous DMF over ~30 min (the reaction temperature was maintained below 50–55 °C because the reaction is highly exothermic and is accompanied by evolution of nitrogen oxides and other gases). The reaction mixture was stirred at 50–55 °C for 2.5 h, cooled to 10 °C, and poured into 400 mL of ice water. The oily product that formed was separated from the aqueous layer (the latter was retained), washed with water (3×10 mL), dried with MgSO₄, and distilled. The yield of product 2 was 5 g, b.p. 54–55 °C (760 Torr), m.p. -85 °C, n_D^{20} 1.3515, d_4^{20} 1.5925, purity ~99% (GLC). Found (%): C, 6.83; F, 32.73. CF₃N₃O₄. Calculated (%): C, 6.85; F, 32.56. Molecular mass,

found (cryoscopic measurements in nitrobenzene): 185. Calculated: 175. IR, v/cm^{-1} : 803, 1303, 1630 (FC(NO₂)₂); 683, 933 and 955 (NF₂). ¹⁹F NMR, δ : -105 (br.s, NF₂); +33.8 (quint, C–F). The organic material was extracted from the aqueous layer (see above) with chlorobenzene (3×30 mL), and the extracts were combined, washed with water (2×30 mL), and dried with MgSO₄. Twofold distillation additionally gave product **2** (2 g), b.p. 55–56 °C (765 Torr). The total yield of **2** was 40%. In the case of KF, the yield of product **2** was 9%.

Bromonitro(N-fluoroimino) methane (5). A solution of compound 1 (4.04 g, 0.02 mol) in 10 mL of CH₂Cl₂ was added with stirring and cooling with ice water to a solution of freshly calcined LiBr (6.95 g, 0.08 mol) in 30 mL of 96% EtOH over 15 min, so that the reaction temperature was 25-30 °C (the reaction is extremely exothermic, and the solution turns red-brown). The reaction mixture was stirred at 30-35 °C for 2.5 h, cooled to 10 °C, and poured into 200 mL of ice water. The organic layer was separated, and the products were extracted from the aqueous layer with CH₂Cl₂ (2×30 mL). The organic layers were combined, washed with 2% Na₂CO₃ (40 mL) and water (2×40 mL), and dried with MgSO₄. Dichloromethane was distilled under atmospheric pressure using a fractionating column, and the residue was distilled twice to give a light yellow liquid. The yield of product 5 was 0.9 g (26.5%), b.p. 101.5-103.0 °C (760 Torr), purity ~98% (GLC, the product contains up to 2% of CH₂Cl₂). Found (%): F, 11.02; Br, 45.88; N, 14.86. CFBrN₂O₂. Calculated (%): F, 11.12; Br, 46.75; N, 16.39. IR, v/cm^{-1} : 796 (C-Br); 966, 1025 (=NF); 1316 and 1576 (NO₂); 1730 (C=N). The CH₂Cl₂ that distilled contains product 5 and trace amounts of the starting compound 1. The reaction in anhydrous DMF in the presence of CH₂Cl₂ gave product 5 in 21.6% yield.

References

- 1. M. Kamlet and H. Adolph, J. Org. Chem., 1968, 33, 3073.
- 2. US Pat. 3.127.736; Chem. Abstrs., 1964, 61, 5445n.
- G. Kh. Khisamutdinov, V. I. Slovetskii, M. Sh. L'vova, O. G. Usyshkin, M. A. Besprozvannyi, and A. A. Fainzil'berg, Izv. Akad. Nauk SSSR, Ser. Khim., 1970, 2553 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1970, 19, 2397 (Engl. Transl.)].
- A. A. Fainzil'berg, G. Kh. Khisamutdinov, and V. I. Slovetskii, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1969, 476 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1969, 18 (Engl. Transl.)].
- G. Kh. Khisamutdinov, V. I. Slovetskii, A. A. Fainzil'berg, and M. Sh. L'vova, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1971, 1073 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1971, 20, 976 (Engl. Transl.)].
- G. Kh. Khisamutdinov, V. I. Slovetskii, Yu. M. Golub,
 S. A. Shevelev, and A. A. Fainzil'berg, *Izv. Akad. Nauk, Ser. Khim.*, 1997, 338 [Russ. Chem. Bull., 1997, 46, 324 (Engl. Transl.)].
- 7. US Pat. 4.476.311.
- 8. M. Sh. L'vova, V. I. Slovetskii, and A. A. Fainzil'berg, *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, 1966, 649 [*Bull. Acad. Sci. USSR*, *Div. Chem. Sci.*, 1966, 15 (Engl. Transl.)].
- 9. D. Clover, J. Phys. Chem., 1968, 72, 1402.
- L. I. Khmel'nitskii, S. S. Novikov, and T. I. Godovikova, Khimiya furoksanov (sintez i stroenie) [Chemistry of Furoxanes (Synthesis and Structure)], Nauka, Moscow, 1981, 144 (in Russian).
- B. I. Shapiro, L. V. Okhlobystina, V. M. Khutoretskii, A. A. Fainzil'berg, and Ya. K. Syrkin, *Dokl. Akad Nauk SSSR*, 1970, 190, 884 [*Dokl. Chem.*, 1970 (Engl. Transl.)].

Received June 7, 2000; in revised form December 26, 2000